fbpx

Resource: Pi

Pi $\pi$ is a constant of nature with infinitely many decimals (an irrational number). It is defined as the ratio between circumference and diameter of any circle.

The first 500 decimals are:[1]

$$
\begin{align}
\pi=3.&1415926535\;8979323846\; 2643383279 \; 5028841971 \;6939937510\\
~& 5820974944 \; 5923078164 \; 0628620899 \; 8628034825 \; 3421170679\\
~& 8214808651 \; 3282306647 \; 0938446095 \; 5058223172 \; 5359408128\\
~& 4811174502 \; 8410270193 \; 8521105559 \; 6446229489 \; 5493038196\\
~& 4428810975 \; 6659334461 \; 2847564823 \; 3786783165 \; 2712019091\\
~& 4564856692 \; 3460348610 \; 4543266482 \; 1339360726 \; 0249141273\\
~& 7245870066 \; 0631558817 \; 4881520920 \; 9628292540 \; 9171536436\\
~& 7892590360 \; 0113305305 \; 4882046652 \; 1384146951 \; 9415116094\\
~& 3305727036 \; 5759591953 \; 0921861173 \; 8193261179 \; 3105118548\\
~& 0744623799 \; 6274956735 \; 1885752724 \; 8912279381 \; 8301194912\\
~& \ldots
\end{align}
$$

$\pi$ has no pattern (never starts repeating itself) and never ends – and this is not just something people think; it can be proven.[2] Pi has become an international phenomenon and there even is a ‘pi day’: March 14th (3/14). See the website www.piday.org.


References:

  1. The first 10 digits of pi (π) are 3.1415926535’ (web page), Pi Day2, 2018, www.piday.org/million (accessed May 10th, 2019)
  2. Q: How do we know that π never repeats? If we find enough digits, isn’t it possible that it will eventually start repeating?’ (web page), Ask a Mathematician / Ask a Physicist, 2013, www.askamathematician.com/2013/12/q-how-do-we-know-that-π-never-repeats-if-we-find-enough-digits-isnt-it-possible-that-it-will-eventually-start-repeating (accessed May 10th, 2019)

Responses